Development of a Novel Maternal-Fetal Physiologically Based Pharmacokinetic Model I: Insights into Factors that Determine Fetal Drug Exposure through Simulations and Sensitivity Analyses.
نویسندگان
چکیده
Determining fetal drug exposure (except at the time of birth) is not possible for both logistical and ethical reasons. Therefore, we developed a novel maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) model to predict fetal exposure to drugs and populated this model with gestational age-dependent changes in maternal-fetal physiology. Then, we used this m-f-PBPK to: 1) perform a series of sensitivity analyses to quantitatively demonstrate the impact of fetoplacental metabolism and placental transport on fetal drug exposure for various drug-dosing regimens administered to the mother; 2) predict the impact of gestational age on fetal drug exposure; and 3) demonstrate that a single umbilical venous (UV)/maternal plasma (MP) ratio (even after multiple-dose oral administration to steady state) does not necessarily reflect fetal drug exposure. In addition, we verified the implementation of this m-f-PBPK model by comparing the predicted UV/MP and fetal/MP AUC ratios with those predicted at steady state after an intravenous infusion. Our simulations yielded novel insights into the quantitative contribution of fetoplacental metabolism and/or placental transport on gestational age-dependent fetal drug exposure. Through sensitivity analyses, we demonstrated that the UV/MP ratio does not measure the extent of fetal drug exposure unless obtained at steady state after an intravenous infusion or when there is little or no fluctuation in MP drug concentrations after multiple-dose oral administration. The proposed m-f-PBPK model can be used to predict fetal exposure to drugs across gestational ages and therefore provide the necessary information to assess the risk of drug toxicity to the fetus.
منابع مشابه
The impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملPredicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: a physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat.
Perchlorate (ClO4-) disrupts endocrine homeostasis by competitively inhibiting the transport of iodide (I-) into the thyroid. The potential for health effects from human exposure to ClO4- in drinking water is not known, but experimental animal studies are suggestive of developmental effects from ClO4- induced iodide deficiency during gestation. Normal hormone-dependent development relies, in pa...
متن کاملPhysiologically based pharmacokinetic model for developmental exposures to TCDD in the rat.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in rodents, and these effects occur at exposures similar to background human body burdens. A physiologically based pharmacokinetic (PBPK) model can aid in quantitatively describing the relationship between exposure, dose, and response. The aim of this work was the development a PBPK model to describe the relationship ...
متن کاملI-40: Non Invasive Prenatal Genetic Diagnosis;Current Status and The Future
Discovery of cell free fetal DNA in 1997 has deeply changed the outlook of prenatal diagnosis approaches as most of the clinically established screening tests are not sensitive/specific enough while the current practical diagnostic tests are also invasive in their nature. The most common prenatal screening test is routinely practiced for the diagnosis of Down syndrome (DS) which includes a 10% ...
متن کاملIntegration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards.
A computational framework was developed to assist in screening and prioritizing chemicals based on their dosimetry, toxicity, and potential exposures. The overall strategy started with contextualizing chemical activity observed in high-throughput toxicity screening (HTS) by mapping these assays to biological events described in Adverse Outcome Pathways (AOPs). Next, in vitro to in vivo (IVIVE) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 45 8 شماره
صفحات -
تاریخ انتشار 2017